Forecasting moving average exponential smoothing


Moving Average Forecasting Introdução. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma maior pontuação. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha para que o resultado da computação seja exibido onde ele deve gostar do seguinte. As médias móveis são mais do que o estudo de uma seqüência de números em ordem sucessiva. Os primeiros praticantes de análises de séries temporais estavam realmente mais preocupados com números de séries temporais individuais do que com a interpolação desses dados. Interpolação. Na forma de teorias de probabilidade e análise, veio muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez compreendidas, várias curvas e linhas foram desenhadas ao longo das séries temporais, numa tentativa de prever onde os pontos de dados poderiam ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. Análise de gráficos pode ser rastreada até ao século 18 Japão, mas como e quando as médias móveis foram aplicadas pela primeira vez para os preços de mercado continua a ser um mistério. É geralmente entendido que as médias móveis simples (SMA) foram usadas muito antes de médias móveis exponenciais (EMA), porque EMAs são construídos em SMA quadro eo continuum SMA foi mais facilmente compreendido para fins de plotagem e acompanhamento. Média móvel simples (SMA) As médias móveis simples tornaram-se o método preferido para rastrear os preços de mercado, porque eles são rápidos de calcular e fácil de entender. Os primeiros praticantes de mercado operavam sem o uso de métricas de gráficos sofisticados em uso hoje, então eles dependiam principalmente dos preços de mercado como seus únicos guias. Eles calcularam os preços de mercado à mão, e graficou esses preços para denotar tendências e direção de mercado. Este processo foi bastante tedioso, mas provou ser bastante rentável com a confirmação de mais estudos. Para calcular uma média móvel simples de 10 dias, simplesmente adicione os preços de fechamento dos últimos 10 dias e divida por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de um período de 20 dias e dividindo por 20 e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é uma média de preços - um subconjunto. As médias móveis são chamadas de movimento porque o grupo de preços usado no cálculo se move de acordo com o ponto no gráfico. Isto significa que os dias velhos são deixados cair em favor de dias novos do preço de fechamento, assim que um cálculo novo é sempre necessário que corresponde ao frame de tempo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e deixando cair o 10o dia, eo nono dia é deixado cair no segundo dia. Média Móvel Exponencial (EMA) A média móvel exponencial tem sido refinada e mais comumente usada desde a década de 1960, graças aos experimentos de praticantes anteriores com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 / (1N) onde N é o número de dias. Uma EMA de 10 dias 2 / (101) 18.8 Isto significa que uma EMA de 10 períodos pondera o preço mais recente 18,8, um EMA de 20 dias de 9,52 e um peso de EMA de 50 dias de 3,92 no dia mais recente. A EMA trabalha ponderando a diferença entre o preço dos períodos atuais e a EMA anterior e adicionando o resultado à EMA anterior. Quanto mais curto o período, mais peso é aplicado ao preço mais recente. Fitting Lines Por estes cálculos, pontos são plotados, revelando uma linha de montagem. Linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados ​​principalmente para seguir as tendências. Eles não funcionam bem com os mercados de gama e períodos de congestionamento, porque as linhas de montagem não denotam uma tendência devido a uma falta de maiores ou mais baixos evidentes baixos. Além disso, linhas de encaixe tendem a permanecer constantes sem sugestão de direção. Uma linha de montagem crescente abaixo do mercado significa um longo, enquanto uma linha de montagem caindo acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de Moving Average.) O objetivo de empregar uma média móvel simples é detectar e mensurar tendências ao suavizar os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos de tendências anteriores continuarão. Para a média móvel simples, uma tendência de longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com pressuposto razoável de que a linha de ajuste será mais forte do que uma linha de EMA devido ao foco mais longo em preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, um EMA suposto para reduzir quaisquer defasagens na média móvel simples para que a linha de ajuste vai abraçar os preços mais perto do que uma simples média móvel. O problema com a EMA é o seguinte: o seu propenso a quebra de preços, especialmente durante os mercados rápidos e períodos de volatilidade. A EMA funciona bem até os preços quebrar a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar o aumento da duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de Tendência Como indicadores de atraso, médias móveis servem bem como linhas de suporte e resistência. Se os preços despencarem abaixo de uma linha de ajuste de 10 dias em uma tendência ascendente, as chances são boas de que a tendência de alta pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços quebrar acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nesses casos, empregar uma média móvel de 10 e 20 dias juntos e esperar que a linha de 10 dias atravesse acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direções de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, sua chamada cruz de morte. E é muito bearish para preços. Uma média móvel de 100 dias que ultrapassa uma média móvel de 200 dias é chamada de cruz dourada. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência seguinte. É apenas a curto prazo que a SMA tem ligeiros desvios em relação à sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência alisando os movimentos de preços. A análise técnica é por vezes referida como uma arte em vez de uma ciência, que levam anos para dominar. (Saiba mais em nosso Tutorial de Análise Técnica.) Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizagem JavaScript E-Labs para tomada de decisão. Outros JavaScript nesta série são categorizados sob diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. Caixas em branco não são incluídas nos cálculos, mas zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto que em Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 / (n1) OR n (2 - a) / a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) / Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0,40 é frequentemente eficaz. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla consiste na comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou mesmo próximos, ótimos por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é apoiada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir esse processo algumas vezes para obter as previsões de curto prazo necessárias.

Comments

Popular posts from this blog

Moving average mysql

Melhores médias móveis forex

Estratégia de treinamento vs plano